[jupyter] 버거킹 분석 인터넷에 올라옴.
http://nbviewer.jupyter.org/gist/hyeshik/cf9f3d7686e07eedbfda?revision=6
loess smoothing 곡선을 그려준것이 매우 유효해보인다.
import rpy2.robjects as ro
def loess_fit(x, y, px=None, model=None, alpha=0.5):
if model is None:
model = ro.r('y ~ x')
if px is None:
px = np.linspace(min(x), max(x), 22)[1:-1]
fitframe = ro.DataFrame({'x': ro.FloatVector(x), 'y': ro.FloatVector(y)})
loessmodel = ro.r.loess(model, fitframe, span=alpha)
predframe = ro.DataFrame({'x': ro.FloatVector(px)})
predy = ro.r.predict(loessmodel, predframe)
preddata = [(x, predy[i]) for i, x in enumerate(px)]
return np.array(preddata).transpose()
lotteria_trend = loess_fit(np.log10(bgt['density']), lotteria_to_random)
BK_trend = loess_fit(np.log10(bgt['density']), BK_to_random)
mcdonalds_trend = loess_fit(np.log10(bgt['density']), mcdonalds_to_random)